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Abstract 
 

Oil recovery operations are strongly conditioned by a 
series of complex phenomena that take place in the reservoir. 
Presently, it is common to use numerical modeling tools for 
the oilfield development. 

In this paper we present the first implementation step of a 
streamline-based simulator for unstructured grids. In this 
stage, we focus on a 2D incompressible flow model.   
Streamline flow simulation has been extensively used for the 
past ten years, and it is now used as an effective and 
complementary tool to more traditional flow modeling 
approaches, such as finite differences. 

Streamline-based simulation is suitable for large, 
geologically complex and heterogeneous systems, where fluid 
flow is dictated by well rates, rock properties, fluid mobility 
and gravity. Capillary effects and expansion-dominated 
systems are not modeled correctly using streamlines. 

The mathematical model is based on the mass conservation 
of the three-phase system. 

The basic hypothesis, as well as the mathematical model 
on which the streamline-based simulator stand, are presented 
in some detail.  

We use the finite volume scheme as the numerical method 
for the discretization of the differential equations. Trinodal 
triangular elements are used. The pressure equation 
formulation is space centered with an upstream formulation 
for the phases mobilities and is solved using a direct skyline 
solver2. The 1D saturation equation is discretized using an 
explicit finite difference scheme in time and an upstream 
formulation in space.  

The results obtained by our streamline-based simulator are 
compared with known analytical solutions (such as Buckley-
Leverett flow) and with our previous full implicit black oil 
simulator. Good quantitative agreement is obtained.    
 

Introduction 
 

Numerical reservoir simulation is a widely used tool for 
production enhancement, reservoir characterization and 
understanding of fluid flow performance. The more realistic 
the physical and reservoir models are, the more accurate is the 
answer obtained.  

Many techniques have been developed to obtain more 
realistic geological models, such as geostatistical models, and 
laboratory techniques. 

Therefore, as the complexity of reservoir modeling has 
been increasing, the difficulties in solving them have increased 
as well. Nowadays, it is not strange to find reservoir models 
on the order of 106 gridblocks. One solution to this problem is 
the improvement of the hardware used to solve them, such as 
cluster parallelization and the processors speed. The other 
approach is the improvement of simulation methods 
themselves.  This is the case of streamline simulation. 

Streamline-based simulation relies on the fact that there 
are, at least, two distinct time scales in the process of field 
scale fluid flow through porous media. The time scale of 
pressure diffusion is much smaller than the time scale of 
saturation diffusion, so the quasi-stationarity hypothesis can be 
used. This decouples the pressure and saturation dynamic 
problems. Then, changing variables to the “time of flight” i.e., 
a parameter along streamlines, the full 2D/3D problem 
converts into multiple 1D problems solved along streamlines. 
The underlying idea is to merge the Lagrange and Euler flow 
approaches. 

Once the pressure field is calculated, the streamline paths 
are univocally determined and traced from injectors to 
producers.  Then, saturations are moved along a “natural” 
streamlines grid until the pressure field is recalculated and the 
cycle is repeated. This makes the streamlines method an 
IMPES numerical method.  

Solving the 1D saturation equation along the streamline 
grid instead of solving saturations between discrete gridblocks 
enables the use of large convective steps, making the system 
evolution much faster. Furthermore, for heterogeneous 
systems it is claimed1 that the pressure field is a weak function 
of fluid properties, making the number of pressure updates 
very small.  

The ability to take large convective steps and only update 
the streamline paths periodically is the primary reason why 
streamline-based simulators are orders of magnitude faster 
than conventional simulators.  
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In the next section the basic equations and hypothesis 
leading to streamline theory will be shown and explained in 
some detail. 
 
Statement of Theory and Definitions 

 
The mass conservation equation for component i (1≤ i ≤ 

NI) distributed in phase j (where j = oil, gas or water) and 
neglecting gravity effects is given by:  
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where we have defined: 

t : time coordinate [sec] 
x,y : spatial horizontal coordinates [m]  

( )/ , /x y∇ = ∂ ∂ ∂ ∂  : gradient operator [1/m] 
      H (x, y) :  thickness [m] 
      Pj : phase pressure [N/m2] 
      Sj (x, y) : saturation of phase j [-] 
      φ (x, y) : rock porosity [-] 
      ρj (x, y) : density of phase j [kg/m3] 
      μj (x, y) :  viscosity of phase j [kg/(m.s)]  
      krj (x, y) :  relative permeability of phase j [-] 

Cij : mass fraction of component i in phase j [-]  

     K (x, y) : Absolute permeability tensor [m2] 
      qi (x, y) : Local mass injection/production per volume of           
component i [kg/(m3.s)] 
 
We have used Darcy’s law as a phenomenological law. 
Equation (1) simply states that the increase in mass of 
component i in an elemental volume, equals the mass flux of 
that component through the edges of the control volume, plus 
the local mass injection or production of the same component. 

The streamlines model requires some additional hypothesis 
such as: there is no fluid compressibility, the capillary pressure 
and the solubilities are neglected, and pressure is solved for in 
a quasi-stationary state. In mathematical form: 
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Using (2) in equations (1), and doing some algebra, we obtain 
the pressure and saturation equations: 
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where the summation in (3) is done over the phases injected, 
and we have defined: 
 PΔ : pressure normalization factor [N/m2] 
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λ  :  total fluid mobility [(m.s)/Kg] 

 totu  : total velocity vector field 
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 : Buckley-Leverett fractional flow     

 sq : source (or sink, if negative) flow rate 
 
Then, changing variables to the Time of Flight, which is a 

parameter along the streamlines defined as ( ) ( )∫=
s

u ds
tot

0

ζτ ζφ , 

we obtain a 1D version of (4): 
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Equation (3) was discretized using a finite volume scheme, 
which has the same versatility as a finite element scheme but 
with the additional advantage of intrinsic mass conservation. 
The discretization is performed on an arbitrary, eventually 
unstructured, grid. Details on the technique were presented 
elsewhere2. 
 
Once the pressure equation is solved, the streamlines are 
traced from injectors to producers using Pollock’s 
interpolation algorithm3,4,5. This method use particle tracking 
ideas to define the streamline.  The basic hypothesis of this 
analytical model is that the velocity field in each direction 
varies linearly and is independent of the velocities in the other 
directions, as shown in Figure 1. 
Each streamline is given a flow rate that is calculated as the 
injection flow rate divided by the number of streamlines per 
injector. The beginning position of the streamlines in the 
injector’s control volume edge is calculated as the middle of 
the streamtube carrying the same flow rate.   
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Figure 1. Pollock’s interpolation geometry. 

Pollock’s algorithm was developed for orthogonal unit cells. 
As our grid is non orthogonal, an isoparametric coordinate 
transformation6 was needed to transform them to an 
orthogonal unit cell (Figure 2). Given the four coordinates 
vectors 0 1 2, 3, ,r r r and r  of a quadrangle’s vertexes in 

physical space ( )yx, , the transformation to reference space 

( )ηζ ,  is: 
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Figure 2. Geometry transformation to use Pollock’s algorithm. 

 
Furthermore, the fluxes that cross each quadrangle element 
boundary have to be transformed by φmJ

ff =~  in order to 
ensure mass conservation, where Jm is the transformation 
Jacobian evaluated at the middle of the quadrangle.   
Following Prèvost’s tracing criteria, a sub triangular grid was 
introduced4,5 in order to post-process the discontinuous 
velocities, leading to flux continuous velocity interpolation in 
the whole domain (Figure 3). 
For interior grid nodes, the conditions imposed on the 
velocities in the new “patches” are: 
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where: 

iV  : “patch i” velocity 

4,2n̂ : outer normal to patch face 2-4 

  4,2dl  : length of patch segment 2-4    

 3,2, , ii ff : fluxes though quadrangle faces 2 and 3  

 t̂ : patch i inner edge normal 
 +idl : patch i inner edge length 

For N convergent elements to node i we have 2N unknown 
velocities components. On the other hand, we have N 
conditions in (7), which simply represent mass conservation in 
the subtriangles. In (8) we have N-1 equations that impose flux 
conservation across the inner edges. Finally, equation (9) 
assures flux irrotationality. Thus, (7), (8), and (9) give the 2N 
equations necessary to solve the system.  

 
Figure 3. Prevost’s post process velocities. 

 
When the node is on the edge of the grid, condition (9) is 
replaced by impermeability on the edge, i.e., the patch velocity 
is parallel to the impermeable edge. 
As an illustration, Figure 4 shows the streamlines built for the 
quarter of a five spot test, where fluid is injected at the lower 
left corner and produced at the upper right corner. 
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Figure 4. Example of streamlines traced from injector (lower left 
corner) to producer (upper right corner) using Pollock-Prèvost 
algorithm. 
 
Once the streamlines are traced and the Time of Flight 
measured, the saturation is mapped along each streamline. The 
discretization of (5) was undertaken using an explicit upstream 
finite difference scheme. In points where no sources are 
present, we have: 
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where: 

 j : fluid phase (oil, water, gas) 
k : index that run over all the streamline nodes 

 n : time step index 
 1+Δ n

slt : current time step for saturations evolution 

 slτΔ : Time of Flight of current node 
 
To start the saturation evolution, maximum water saturation at 
the injectors is imposed. 
To ensure numerical stability, we limit the time-step 
automatically, so as information traveling with the highest 
advection velocity cannot proceed beyond the next streamline 
node (Courant condition). Then, for each streamline equation 
(10) is solved iteratively until the pressure-update time step 

tΔ  is reached (i.e., ∑ Δ=Δ
n

n
sltt ). The pressure time step 

ptΔ  is selected so as pressure diffusion has had enough time 
to proceed along the whole reservoir, i.e. 

( )2 /p r tt c L Kφ λΔ ≈ , where L is the reservoir length. This 
time step represents the time necessary for the pressure to 
change significantly because of saturation (or mobility) 
change. Thus, between pressure changes many saturation time 
steps can be performed. 

After saturations are updated in the streamlines grid, they must 
be mapped back to the underlying original grid using a Time 
of Flight weighting method. This is performed by averaging 
the properties along streamlines passing through each 
quadrangle, weighted with Time of Flight:  
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Once this is done, the process is repeated by going back to the 
pressure field calculation.  
 
Presentation of Data and Results 
 
We will present results for two problems, in order to validate 
the implemented numerical model. First, we will simulate the 
1D immiscible two-phase displacement problem, by injecting 
water in a channel saturated with oil. The channel is 5000 m 
long (x direction), 200 m wide (y direction), and has a 
homogeneous depth of 10 m. The calculation grid is regular, 
with 100 m side triangular elements. Properties are considered 
as homogeneous: porosity Φ = 0.2, absolute permeability K = 
10-13 m2, rock compressibility cr = 5.10-9 1/Pa, oil viscosity μo 
= 0.001 Pa.s.  
  
Water injection is applied at the three leftmost nodes from the 
side of the channel, two at the corners and one in the middle. 
The mobility ratio is equal to 1. The total injection flow rate 
was 6 10-4 m3/s. At the producers, a constant pressure of 0.01 
Pa was imposed. The relative permeability was related to 
saturation through the simple relation: 

( )21 wdotro Skk −= and 2
wdwtrw Skk =  

where ( ) ( )/ 1wd w wc wc orS S S S S≡ − − −  is the relative 
saturation, Swc the critical water saturation, Sor the residual oil 
saturation, kot the oil relative permeability when Sw = Swc, and 
kwt the water relative permeability at Sw = 1-Sor . 

The numerical results are compared with Buckley-Leverett 
analytical solution, and with a fully implicit black oil 
simulator2 (Figure 5). The agreement with the analytical 
solution is considered satisfactory. Deviations arise around the 
saturation front due to numerical diffusion. However, this 
effect is weaker than for the full simulator. In a second test 
with fluid, a mobility ratio of 10 was undertaken, with a 
similar degree of agreement (Figure 6). Computer time was 
three orders of magnitude higher for the full simulator in 
comparison with the streamlines simulator. 
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Figure 5. Comparison among water saturation profiles according 
to the analytical Buckley-Leverett solution (solid line), the 
streamline solution (dash-dot line), and the implicit simulator 
solution (small dash line), for two different instants of time. 
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Figure 6.  Buckley-Leverett 1D flow with mobility ratio of 10. 
Analytical (solid line) and numerical streamline solutions (dashed 
line) are compared for two instants of time. 
 

Figure 7 shows cumulative oil production for the equal 
mobility case, for both simulators. A good quantitative 
agreement is obtained.  
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Figure 7. Cumulative oil production comparison for the Buckley-
Leverett. Streamline simulator (solid line), and implicit black oil 
simulator (dashed line). 
 
 

 The second test performed is a quarter of a five-spot tracer 
flow. The domain is discretized with a 21 x 21 x 1 nodes grid, 
with 100 m size triangular elements, and a uniform height of 
10 m. The rock and fluid properties were the same as for the 
previous problem. The injection flow rate was 0.01 m3/s. At 
the producer, zero pressure was imposed. Saturation profiles 
along the grid diagonal (from injector to producer) are shown 
in Figure 8. As there is no closed analytical solution for this 
problem, the comparison is made only against the full implicit 
simulator solution. Good quantitative agreement is observed. 
Again, higher numerical diffusion is detected for the full 
simulator around the saturation front. The cumulative oil 
production according to both simulators is compared in Figure 
9. Good quantitative agreement is observed. 
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Figure 8. Quarter of a five-spot tracer flow saturation profiles for 
two different instants of time. Comparison between streamlines 
simulator (solid line) and fully implicit simulator (dashed line).  
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Figure 9. Cumulative oil production from streamlines simulator 
(solid black line) and full implicit simulator (dashed grey line).  
 

Figures 10 and 11 present the saturation distribution for 
two instants of time, where the displacement of the saturation 
front can be observed. 

Once again, computer time for the full simulator was 2 to 3 
orders of magnitude higher than for the streamlines simulator.  
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Figure 10. Quarter of a five spot tracer flow horizontal picture. 
Tracer saturation front is advancing from the lower left corner.  
 

 
Figure 11. Tracer saturation front advancing through the grid. 
Tracer flow is represented in gray scale, oil phase fluid is 
represented in white.  Streamlines were removed for the sake of 
clearness. 
 
 

Conclusions 
 
A 2D streamline-base simulator for unstructured grids was 

successfully implemented. The implemented streamline 
tracing quality criteria allowed the simulator to trace the 
streamlines field correctly. For the Buckley-Leverett 1D flow 
problem, the method showed a satisfactory agreement with the 
analytical solution. The agreement is slightly better than the 
full implicit simulator used as a reference, due to its lower 
numerical diffusivity. Results for the quarter of a five spot 
problem also show good quantitative agreement between both 
simulators, regarding both the displacement of the saturation 
front and the cumulative oil production. 

The computer performance of the streamlines simulator 
was much better than for the full simulator, with processing 
times two to three orders of magnitude lower. 

  The implemented model, together with the full simulator, 
constitute a system under development, within a research and 
development program, to deal with ever increasing levels of 
complexity in analyzing and predicting oil reservoir behaviors. 
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